3.19.48 \(\int \frac {a+b x}{(d+e x)^{7/2} (a^2+2 a b x+b^2 x^2)} \, dx\)

Optimal. Leaf size=119 \[ -\frac {2 b^{5/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{7/2}}+\frac {2 b^2}{\sqrt {d+e x} (b d-a e)^3}+\frac {2 b}{3 (d+e x)^{3/2} (b d-a e)^2}+\frac {2}{5 (d+e x)^{5/2} (b d-a e)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {27, 51, 63, 208} \begin {gather*} \frac {2 b^2}{\sqrt {d+e x} (b d-a e)^3}-\frac {2 b^{5/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{7/2}}+\frac {2 b}{3 (d+e x)^{3/2} (b d-a e)^2}+\frac {2}{5 (d+e x)^{5/2} (b d-a e)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x)/((d + e*x)^(7/2)*(a^2 + 2*a*b*x + b^2*x^2)),x]

[Out]

2/(5*(b*d - a*e)*(d + e*x)^(5/2)) + (2*b)/(3*(b*d - a*e)^2*(d + e*x)^(3/2)) + (2*b^2)/((b*d - a*e)^3*Sqrt[d +
e*x]) - (2*b^(5/2)*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(b*d - a*e)^(7/2)

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {a+b x}{(d+e x)^{7/2} \left (a^2+2 a b x+b^2 x^2\right )} \, dx &=\int \frac {1}{(a+b x) (d+e x)^{7/2}} \, dx\\ &=\frac {2}{5 (b d-a e) (d+e x)^{5/2}}+\frac {b \int \frac {1}{(a+b x) (d+e x)^{5/2}} \, dx}{b d-a e}\\ &=\frac {2}{5 (b d-a e) (d+e x)^{5/2}}+\frac {2 b}{3 (b d-a e)^2 (d+e x)^{3/2}}+\frac {b^2 \int \frac {1}{(a+b x) (d+e x)^{3/2}} \, dx}{(b d-a e)^2}\\ &=\frac {2}{5 (b d-a e) (d+e x)^{5/2}}+\frac {2 b}{3 (b d-a e)^2 (d+e x)^{3/2}}+\frac {2 b^2}{(b d-a e)^3 \sqrt {d+e x}}+\frac {b^3 \int \frac {1}{(a+b x) \sqrt {d+e x}} \, dx}{(b d-a e)^3}\\ &=\frac {2}{5 (b d-a e) (d+e x)^{5/2}}+\frac {2 b}{3 (b d-a e)^2 (d+e x)^{3/2}}+\frac {2 b^2}{(b d-a e)^3 \sqrt {d+e x}}+\frac {\left (2 b^3\right ) \operatorname {Subst}\left (\int \frac {1}{a-\frac {b d}{e}+\frac {b x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{e (b d-a e)^3}\\ &=\frac {2}{5 (b d-a e) (d+e x)^{5/2}}+\frac {2 b}{3 (b d-a e)^2 (d+e x)^{3/2}}+\frac {2 b^2}{(b d-a e)^3 \sqrt {d+e x}}-\frac {2 b^{5/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 48, normalized size = 0.40 \begin {gather*} \frac {2 \, _2F_1\left (-\frac {5}{2},1;-\frac {3}{2};\frac {b (d+e x)}{b d-a e}\right )}{5 (d+e x)^{5/2} (b d-a e)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)/((d + e*x)^(7/2)*(a^2 + 2*a*b*x + b^2*x^2)),x]

[Out]

(2*Hypergeometric2F1[-5/2, 1, -3/2, (b*(d + e*x))/(b*d - a*e)])/(5*(b*d - a*e)*(d + e*x)^(5/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.23, size = 137, normalized size = 1.15 \begin {gather*} \frac {2 \left (3 a^2 e^2-5 a b e (d+e x)-6 a b d e+3 b^2 d^2+15 b^2 (d+e x)^2+5 b^2 d (d+e x)\right )}{15 (d+e x)^{5/2} (b d-a e)^3}+\frac {2 b^{5/2} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x} \sqrt {a e-b d}}{b d-a e}\right )}{(a e-b d)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a + b*x)/((d + e*x)^(7/2)*(a^2 + 2*a*b*x + b^2*x^2)),x]

[Out]

(2*(3*b^2*d^2 - 6*a*b*d*e + 3*a^2*e^2 + 5*b^2*d*(d + e*x) - 5*a*b*e*(d + e*x) + 15*b^2*(d + e*x)^2))/(15*(b*d
- a*e)^3*(d + e*x)^(5/2)) + (2*b^(5/2)*ArcTan[(Sqrt[b]*Sqrt[-(b*d) + a*e]*Sqrt[d + e*x])/(b*d - a*e)])/(-(b*d)
 + a*e)^(7/2)

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 706, normalized size = 5.93 \begin {gather*} \left [-\frac {15 \, {\left (b^{2} e^{3} x^{3} + 3 \, b^{2} d e^{2} x^{2} + 3 \, b^{2} d^{2} e x + b^{2} d^{3}\right )} \sqrt {\frac {b}{b d - a e}} \log \left (\frac {b e x + 2 \, b d - a e + 2 \, {\left (b d - a e\right )} \sqrt {e x + d} \sqrt {\frac {b}{b d - a e}}}{b x + a}\right ) - 2 \, {\left (15 \, b^{2} e^{2} x^{2} + 23 \, b^{2} d^{2} - 11 \, a b d e + 3 \, a^{2} e^{2} + 5 \, {\left (7 \, b^{2} d e - a b e^{2}\right )} x\right )} \sqrt {e x + d}}{15 \, {\left (b^{3} d^{6} - 3 \, a b^{2} d^{5} e + 3 \, a^{2} b d^{4} e^{2} - a^{3} d^{3} e^{3} + {\left (b^{3} d^{3} e^{3} - 3 \, a b^{2} d^{2} e^{4} + 3 \, a^{2} b d e^{5} - a^{3} e^{6}\right )} x^{3} + 3 \, {\left (b^{3} d^{4} e^{2} - 3 \, a b^{2} d^{3} e^{3} + 3 \, a^{2} b d^{2} e^{4} - a^{3} d e^{5}\right )} x^{2} + 3 \, {\left (b^{3} d^{5} e - 3 \, a b^{2} d^{4} e^{2} + 3 \, a^{2} b d^{3} e^{3} - a^{3} d^{2} e^{4}\right )} x\right )}}, -\frac {2 \, {\left (15 \, {\left (b^{2} e^{3} x^{3} + 3 \, b^{2} d e^{2} x^{2} + 3 \, b^{2} d^{2} e x + b^{2} d^{3}\right )} \sqrt {-\frac {b}{b d - a e}} \arctan \left (-\frac {{\left (b d - a e\right )} \sqrt {e x + d} \sqrt {-\frac {b}{b d - a e}}}{b e x + b d}\right ) - {\left (15 \, b^{2} e^{2} x^{2} + 23 \, b^{2} d^{2} - 11 \, a b d e + 3 \, a^{2} e^{2} + 5 \, {\left (7 \, b^{2} d e - a b e^{2}\right )} x\right )} \sqrt {e x + d}\right )}}{15 \, {\left (b^{3} d^{6} - 3 \, a b^{2} d^{5} e + 3 \, a^{2} b d^{4} e^{2} - a^{3} d^{3} e^{3} + {\left (b^{3} d^{3} e^{3} - 3 \, a b^{2} d^{2} e^{4} + 3 \, a^{2} b d e^{5} - a^{3} e^{6}\right )} x^{3} + 3 \, {\left (b^{3} d^{4} e^{2} - 3 \, a b^{2} d^{3} e^{3} + 3 \, a^{2} b d^{2} e^{4} - a^{3} d e^{5}\right )} x^{2} + 3 \, {\left (b^{3} d^{5} e - 3 \, a b^{2} d^{4} e^{2} + 3 \, a^{2} b d^{3} e^{3} - a^{3} d^{2} e^{4}\right )} x\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2),x, algorithm="fricas")

[Out]

[-1/15*(15*(b^2*e^3*x^3 + 3*b^2*d*e^2*x^2 + 3*b^2*d^2*e*x + b^2*d^3)*sqrt(b/(b*d - a*e))*log((b*e*x + 2*b*d -
a*e + 2*(b*d - a*e)*sqrt(e*x + d)*sqrt(b/(b*d - a*e)))/(b*x + a)) - 2*(15*b^2*e^2*x^2 + 23*b^2*d^2 - 11*a*b*d*
e + 3*a^2*e^2 + 5*(7*b^2*d*e - a*b*e^2)*x)*sqrt(e*x + d))/(b^3*d^6 - 3*a*b^2*d^5*e + 3*a^2*b*d^4*e^2 - a^3*d^3
*e^3 + (b^3*d^3*e^3 - 3*a*b^2*d^2*e^4 + 3*a^2*b*d*e^5 - a^3*e^6)*x^3 + 3*(b^3*d^4*e^2 - 3*a*b^2*d^3*e^3 + 3*a^
2*b*d^2*e^4 - a^3*d*e^5)*x^2 + 3*(b^3*d^5*e - 3*a*b^2*d^4*e^2 + 3*a^2*b*d^3*e^3 - a^3*d^2*e^4)*x), -2/15*(15*(
b^2*e^3*x^3 + 3*b^2*d*e^2*x^2 + 3*b^2*d^2*e*x + b^2*d^3)*sqrt(-b/(b*d - a*e))*arctan(-(b*d - a*e)*sqrt(e*x + d
)*sqrt(-b/(b*d - a*e))/(b*e*x + b*d)) - (15*b^2*e^2*x^2 + 23*b^2*d^2 - 11*a*b*d*e + 3*a^2*e^2 + 5*(7*b^2*d*e -
 a*b*e^2)*x)*sqrt(e*x + d))/(b^3*d^6 - 3*a*b^2*d^5*e + 3*a^2*b*d^4*e^2 - a^3*d^3*e^3 + (b^3*d^3*e^3 - 3*a*b^2*
d^2*e^4 + 3*a^2*b*d*e^5 - a^3*e^6)*x^3 + 3*(b^3*d^4*e^2 - 3*a*b^2*d^3*e^3 + 3*a^2*b*d^2*e^4 - a^3*d*e^5)*x^2 +
 3*(b^3*d^5*e - 3*a*b^2*d^4*e^2 + 3*a^2*b*d^3*e^3 - a^3*d^2*e^4)*x)]

________________________________________________________________________________________

giac [A]  time = 0.21, size = 189, normalized size = 1.59 \begin {gather*} \frac {2 \, b^{3} \arctan \left (\frac {\sqrt {x e + d} b}{\sqrt {-b^{2} d + a b e}}\right )}{{\left (b^{3} d^{3} - 3 \, a b^{2} d^{2} e + 3 \, a^{2} b d e^{2} - a^{3} e^{3}\right )} \sqrt {-b^{2} d + a b e}} + \frac {2 \, {\left (15 \, {\left (x e + d\right )}^{2} b^{2} + 5 \, {\left (x e + d\right )} b^{2} d + 3 \, b^{2} d^{2} - 5 \, {\left (x e + d\right )} a b e - 6 \, a b d e + 3 \, a^{2} e^{2}\right )}}{15 \, {\left (b^{3} d^{3} - 3 \, a b^{2} d^{2} e + 3 \, a^{2} b d e^{2} - a^{3} e^{3}\right )} {\left (x e + d\right )}^{\frac {5}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2),x, algorithm="giac")

[Out]

2*b^3*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))/((b^3*d^3 - 3*a*b^2*d^2*e + 3*a^2*b*d*e^2 - a^3*e^3)*sqrt(-
b^2*d + a*b*e)) + 2/15*(15*(x*e + d)^2*b^2 + 5*(x*e + d)*b^2*d + 3*b^2*d^2 - 5*(x*e + d)*a*b*e - 6*a*b*d*e + 3
*a^2*e^2)/((b^3*d^3 - 3*a*b^2*d^2*e + 3*a^2*b*d*e^2 - a^3*e^3)*(x*e + d)^(5/2))

________________________________________________________________________________________

maple [A]  time = 0.06, size = 112, normalized size = 0.94 \begin {gather*} -\frac {2 b^{3} \arctan \left (\frac {\sqrt {e x +d}\, b}{\sqrt {\left (a e -b d \right ) b}}\right )}{\left (a e -b d \right )^{3} \sqrt {\left (a e -b d \right ) b}}-\frac {2 b^{2}}{\left (a e -b d \right )^{3} \sqrt {e x +d}}+\frac {2 b}{3 \left (a e -b d \right )^{2} \left (e x +d \right )^{\frac {3}{2}}}-\frac {2}{5 \left (a e -b d \right ) \left (e x +d \right )^{\frac {5}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)/(e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2),x)

[Out]

-2*b^3/(a*e-b*d)^3/((a*e-b*d)*b)^(1/2)*arctan((e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2)*b)-2/5/(a*e-b*d)/(e*x+d)^(5/2)
-2/(a*e-b*d)^3*b^2/(e*x+d)^(1/2)+2/3*b/(a*e-b*d)^2/(e*x+d)^(3/2)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x+d)^(7/2)/(b^2*x^2+2*a*b*x+a^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e-b*d>0)', see `assume?` for
 more details)Is a*e-b*d positive or negative?

________________________________________________________________________________________

mupad [B]  time = 0.12, size = 137, normalized size = 1.15 \begin {gather*} -\frac {\frac {2}{5\,\left (a\,e-b\,d\right )}+\frac {2\,b^2\,{\left (d+e\,x\right )}^2}{{\left (a\,e-b\,d\right )}^3}-\frac {2\,b\,\left (d+e\,x\right )}{3\,{\left (a\,e-b\,d\right )}^2}}{{\left (d+e\,x\right )}^{5/2}}-\frac {2\,b^{5/2}\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d+e\,x}\,\left (a^3\,e^3-3\,a^2\,b\,d\,e^2+3\,a\,b^2\,d^2\,e-b^3\,d^3\right )}{{\left (a\,e-b\,d\right )}^{7/2}}\right )}{{\left (a\,e-b\,d\right )}^{7/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x)/((d + e*x)^(7/2)*(a^2 + b^2*x^2 + 2*a*b*x)),x)

[Out]

- (2/(5*(a*e - b*d)) + (2*b^2*(d + e*x)^2)/(a*e - b*d)^3 - (2*b*(d + e*x))/(3*(a*e - b*d)^2))/(d + e*x)^(5/2)
- (2*b^(5/2)*atan((b^(1/2)*(d + e*x)^(1/2)*(a^3*e^3 - b^3*d^3 + 3*a*b^2*d^2*e - 3*a^2*b*d*e^2))/(a*e - b*d)^(7
/2)))/(a*e - b*d)^(7/2)

________________________________________________________________________________________

sympy [A]  time = 140.18, size = 109, normalized size = 0.92 \begin {gather*} - \frac {2 b^{2}}{\sqrt {d + e x} \left (a e - b d\right )^{3}} - \frac {2 b^{2} \operatorname {atan}{\left (\frac {\sqrt {d + e x}}{\sqrt {\frac {a e - b d}{b}}} \right )}}{\sqrt {\frac {a e - b d}{b}} \left (a e - b d\right )^{3}} + \frac {2 b}{3 \left (d + e x\right )^{\frac {3}{2}} \left (a e - b d\right )^{2}} - \frac {2}{5 \left (d + e x\right )^{\frac {5}{2}} \left (a e - b d\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)/(e*x+d)**(7/2)/(b**2*x**2+2*a*b*x+a**2),x)

[Out]

-2*b**2/(sqrt(d + e*x)*(a*e - b*d)**3) - 2*b**2*atan(sqrt(d + e*x)/sqrt((a*e - b*d)/b))/(sqrt((a*e - b*d)/b)*(
a*e - b*d)**3) + 2*b/(3*(d + e*x)**(3/2)*(a*e - b*d)**2) - 2/(5*(d + e*x)**(5/2)*(a*e - b*d))

________________________________________________________________________________________